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TensorTouch: Calibration of Tactile Sensors for High Resolution

Stress Tensor and Deformation for Dexterous Manipulation
Won Kyung Do1, Matthew Strong2, Aiden Swann1, Boshu Lei3, Monroe Kennedy III1,2

Abstract—Advanced dexterous manipulation involving multi-
ple simultaneous contacts across different surfaces, like pinching
coins from ground or manipulating intertwined objects, remains
challenging for robotic systems. Such tasks exceed the capabilities
of vision and proprioception alone, requiring high-resolution
tactile sensing with calibrated physical metrics. Raw optical
tactile sensor images, while information-rich, lack interpretability
and cross-sensor transferability, limiting their real-world util-
ity. TensorTouch addresses this challenge by integrating finite
element analysis with deep learning to extract comprehensive
contact information from optical tactile sensors, including stress
tensors, deformation fields, and force distributions at pixel-level
resolution. The TensorTouch framework achieves sub-millimeter
position accuracy and precise force estimation while supporting
large sensor deformations crucial for manipulating soft objects.
Experimental validation demonstrates 90% success in selectively
grasping one of two strings based on detected motion, enabling
new contact-rich manipulation capabilities previously inaccessi-
ble to robotic systems.

Index Terms—Dexterous manipulation, optical tactile sensor,
stress tensor estimation, finite element analysis.

I. INTRODUCTION

Dexterous manipulation in contact-rich environments re-
mains as significant challenges in robotics research, with
applications ranging from industrial assembly to household
assistance. While significant progress has been made in simple
manipulation tasks such as pick-and-place operations, folding
laundry, or surface swiping through position control and
vision-based feedback [1], [2] or even with force control
[3], more complex manipulation scenarios remain challeng-
ing. These advanced tasks often require understanding and
responding to multi-contact interactions with multiple objects
or surfaces simultaneously.

Advanced dexterous manipulation, as defined in this work,
involves scenarios where multiple contacts across sensing
modalities must be precisely monitored to capture the full
context of the manipulation. For example when humans pinch
a coin from a flat surface, each finger simultaneously contacts
both the coin and the surface, allowing precise perception
of the coin’s position and establishing force closure across
its edges. Such interactions, involving multiple contacts and
force distributions, are pervasive in everyday tasks yet remain
difficult for robotic systems to execute reliably.
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Fig. 1. TensorTouch framework applied to multi-finger robotic manipulation
with optical tactile sensors mounted on fingertips grasping two strings.
The system processes tactile images (left) through FE analysis to generate
comprehensive tensor outputs: (a) displacement, (b) normal stress, (c) shear
stress, (d) contact normal force, and (e) contact shear force.

Addressing these challenges requires integrating enhanced
manipulability with sophisticated sensing modalities. Specifi-
cally, multi-fingered grippers equipped with rich tactile sensing
capabilities offer promising solutions for complex manipula-
tion scenarios [4], [5]. Vision-based tactile sensors mounted
on fingertips can provide detailed information about contact
geometry, force distribution, and material properties, enabling
robots to understand complex force interactions across multi-
ple objects and environmental contacts. Furthermore, advanced
dexterous tasks, such as handling fragile objects and contact-
rich interactions with slip and shear, often require precise esti-
mation of shear and normal force distribution and deformation.

However, the raw output from optical tactile sensors—
typically images—requires substantial processing to extract
actionable information. While recent research has demon-
strated the utility of simplified tactile features such as contact
position or force direction for specific manipulation tasks,
these approaches fail to exploit the full richness of information
contained in tactile images, such as deformation and force.
Moreover, relying solely on raw tactile images for policy
training creates significant limitations for practical deploy-
ment. When policies are trained directly on unprocessed
tactile images, they become tightly coupled to the specific
sensor hardware used during training, making cross-sensor
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generalization nearly impossible. In contrast, extracting cali-
brated force information and stress distributions provides inter-
pretable, physically meaningful metrics that can be transferred
across different tactile sensing modalities. This calibration-
based approach enables what could be considered ‘sensor-
agnostic representation’ in the sensing domain-the ability to
substitute one tactile sensor for another without retraining
policies, provided both can output standardized force metrics.

Such sensor-agnostic representations dramatically improve
the scalability and practical utility of tactile-based manipula-
tion policies, as robots can leverage multiple sensor types or
even upgrade sensing hardware without requiring extensive re-
training. Furthermore, calibrated force metrics facilitate more
interpretable policy behavior and enable direct integration with
analytical approaches to manipulation that rely on accurate
force information. For these reasons, extracting comprehensive
contact data, including stress tensors and deformation fields,
would significantly enhance manipulation capabilities in com-
plex scenarios.

A fundamental challenge in developing these capabilities
is the lack of accurate physical simulators that can model
the intricate force interactions between tactile sensors and
contacted objects or surfaces. Although recent work has fo-
cused on creating GPU-accelerated simulators for marker-
based tactile sensors, significant sim-to-real gaps persist due to
inadequate physics modeling, particularly for large deforma-
tions and complex contact scenarios. These limitations hamper
the development of policies that can transfer effectively to real-
world applications.

To address these issues comprehensively, we present Tensor-
Touch, a framework for stress tensor estimation from general
optical tactile sensors designed for contact-rich manipulation
tasks. Our approach integrates physics-based simulation with
deep learning to extract detailed contact information from tac-
tile images, enabling advanced manipulation capabilities even
with substantial sensor deformations. The key contributions of
this work include:

• A comprehensive Finite Element analysis (FE analysis)
framework for modeling multi-contact interactions and
large deformations in various 3D-shaped optical tactile
sensors, enabling high-spatial-resolution contact informa-
tion extraction.

• A novel neural network architecture with a lightweight hi-
erarchical vision transformer that efficiently maps tactile
images to comprehensive stress tensors, contact forces,
and deformation fields across the entire sensor surface.

• A motion capture-based data collection system that pairs
tactile images with precise contact poses and force
measurements from diverse object geometries, validated
through experiments on robotic hands performing com-
plex manipulation tasks.

Fig. 1 illustrates our complete framework applied to a chal-
lenging multi-object manipulation scenario, where optical tac-
tile sensors mounted on robotic fingertips enable precise force
and deformation estimation during two-string grasping tasks.

Our framework enables the estimation of diverse contact
information, including contact area, normal and shear forces,
deformed shape, and normal and shear stress distributions

across the sensor surface, even under large deformations.
This comprehensive tactile perception capability facilitates
advanced dexterous manipulation in contact-rich environments
beyond what was previously achievable.

The remainder of this paper is organized as follows: Section
II reviews related work. Section III details our methodology,
including the data collection system, FE analysis approach,
and neural network architecture. Section IV presents experi-
mental results, while Section V demonstrates the evaluation of
TensorTouch. Finally, Section VI concludes with a discussion
of limitations and future work.

II. RELATED WORKS

A. Optical Tactile Sensors

Dexterous manipulation has been proven to work better
with additional modalities, especially input from touch sensors
or contact information with the environment when it comes
to contact-rich manipulation [6]–[10]. One valuable source
of additional modality for dexterous manipulation is tactile
information. Various types of tactile sensors are available,
including those with conductive fields [11], force sensing
resistor arrays [12], piezoelectric sensors, capacitive force
sensors (either as single units or arrays), barometric sensors
[13], and hall effect sensors [14].

Optical tactile sensors, which rely on vision inside de-
formable gel to convert high-resolution images to deformation
or tactile information from the sensor surface, have been
widely researched due to their ability to cover wide areas
accurately with high resolution. These sensors are available in
various shapes. Flat sensors, such as GelSight [15], GelSlim
[16], DIGIT [17], MagicTac [18], and DelTact [19], are well-
suited for parallel jaw grippers. More hemispherical shaped
sensors such as DIGIT360 [20], DenseTact [21], TacTip [22],
and OmniTact [23] offer enhanced capabilities for manip-
ulability with various robot gripper shapes. Custom sensor
designs such as GelSight Svelte [24], DenseTact Mini [25], and
Insight [26] have been developed to further improve dexterous
manipulation capabilities.

For most optical and other tactile sensors, researchers have
tried to constrain the softness of the gel to achieve more ac-
curate correspondence between force application and position
measurements, which unfortunately sacrifices compliance - a
critical property for certain tasks. Some sensors with alter-
native approaches, such as [27], successfully incorporate soft
contact interaction, but the inherent size of these sensors can
limit their use in dexterous manipulation. Therefore, there is a
need to develop better soft deformation calibration algorithms
to enable the use of softer tactile sensors while maintaining
accurate measurements.

B. Requirements of Accurate Calibration for Dexterous Ma-
nipulation

Recent works have proven that adding accurate tactile
information to vision-based policies increases the success rate
of trained policies in both reinforcement learning and imitation
learning. More detailed accurate tactile representations lead to
fine dexterity in both analytical ways and policy learning [4],
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Fig. 2. Overview of a pipeline. We capture real-world pose, force of indenter and sensor images and simulate gel deformation and sensor motion with FE
simulations. The resulting deformation and stress tensors are projected back into 2D images. Images in right part (a-e) show corresponding FE results for (a)
displacement, (b) normal stress, (c) shear stress, (d) contact normal, and (e) contact shear. For each image, the R/G/B channels encode the X/Y/Z components.
Finally, a deep network is trained to map sensor image pairs to stress-tensor outputs.

[6], [9], [10], [28]–[30]. For example, recent developments in
imitation learning suggest that applying fast policy adjustments
with optical flow-based force information from tactile sensors,
rather than raw tactile images, on top of behavior cloning
policies such as diffusion policy [31] provides quick reactive
behavior while processing complex trajectory tracking [32].
While raw tactile images could be an additional source of
multi-modality in policy training, accurate force information
from the tactile sensor reduces dimensionality and enables
policies to learn tactile embeddings more easily than from
raw images. Therefore, calibrating tactile sensory information
is essential to achieve better and finer dexterous manipulation.

C. Sensor Calibration

Optical tactile sensors require conversion of camera images
into useful information, and various approaches have been
proposed for calibrating these sensors using either simulation
or real-world methods. For estimating sensor deformation,
GelSight-related sensors have developed an approach using
Poisson equations to achieve accurate displacement estima-
tion [15]. Other approaches include binocular imaging [33],
[34], regression-based light modeling [35], and self-supervised
neural networks [26] for calibrating sensors with small defor-
mations, typically limited to 1-5mm of displacement.

However, estimating large sensor deformations requires
more sophisticated approaches, such as accounting for bulging
effects [36]. To address this problem more accurately, physics-
based simulation analysis is recommended. Force estimation
requires additional modeling beyond deformation tracking.
Methods for estimating forces include tracking markers on the
sensor surface [37] or using self-supervised neural network
models [26], [38] to obtain force distribution across the
sensor. However, these approaches either work only with small
deformations or lack the detailed modeling needed for accurate
estimation during large deformations. One promising solu-
tion for estimating forces during large deformations is using
physics-based simulation, specifically FE analysis (FEA), to
model sensor deformation in detail.

D. Sensor Calibration to FE Analysis

For the reasons noted above, FE analysis models can
provide near-ground-truth simulations for accurately calibrat-
ing a sensor’s mechanical properties. FEM-based simulators
enable fast analysis using physically accurate models. Since
FEM modeling itself requires significant computational re-
sources, researchers have developed more efficient alternatives
including neural network models [39], convex optimization
approaches [40], and simplified inverse FEM models [37],
[41], [42] that can effectively substitute full FEA models. For
example, iFEM 2.0 [42] utilizes a neo-Hookean model from
Abaqus to successfully estimate 3D contact forces, including
shear forces, for gels up to 3mm thick. However, to our
knowledge, no previous work has correctly modeled large
deformations of tactile sensors with varying gel softness,
which limits the practical utility for handling multiple objects
with various stiffness. In our work, we utilize an FE model
applicable to most sensor shapes that accounts for large de-
formations through careful selection of the mechanical model
for deformable materials, resulting in precise force and stress
distribution calculations across the entire sensor.

E. Learning Depth and Force Estimation from Image Input -
Network Model

Using our FE model outputs, we propose a simplified neural
network-based model using a hierarchical vision transformer
that estimates stress vector fields and displacements from sin-
gle sensor images. Previous research has focused on estimating
single 6-axis force wrenches or normal force distributions [36],
[37], [40]. In contrast, our FE model provides rich force esti-
mates including shear forces for each mesh element, enabling
the complete characterization of force distribution across the
entire sensor surface. Using this detailed information, we can
both construct and train deep networks that directly estimate
force distributions across the sensor surface in a pixel-wise
manner. Researchers have already demonstrated the effec-
tiveness of network models for such force estimations. For
example, Sparsh [38] introduced a self-supervised pretraining
method tactile encoders, which can be effectively trained on
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Fig. 3. Experimental setup for data collection with motion capture cameras
(orange) and reflective markers (yellow) for indentation. The linear guide
system (green) enables precise calibration of the wand position, while the
tactile sensor (blue) is mounted on an optical breadboard to ensure stability.
downstream tasks, such as estimating normal and shear force
distributions using optical flow in flat optical tactile sensors.
Rather than relying on marker-based approaches proposed in
other related works, we accurately model sensor simulation
results with FEM, and use these outputs to train appropriate
network architectures [43], [44] that are significantly faster
than simulation, and estimate the force distribution across the
sensor surface with dense, pixel-level precision.

III. METHOD

A. Motion Capture-Based Setup for Data Collection

We developed an experimental setup for collecting compre-
hensive datasets from vision-based tactile sensors while sup-
porting multiple simultaneous contacts with diverse indenter
shapes. This setup is crucial for accurate sensor simulation
and ensuring generalizability across different contact scenarios
beyond single-point force measurements.

Our system was designed to meet critical requirements: gen-
erate random 6D poses safely within the workspace, accommo-
date multiple sensor form factors, simultaneously capture pose
and force/torque measurements, ensure safe data collection,
handle multiple simultaneous indentations, and provide cost-
effective real-time capabilities with sufficient accuracy.

After evaluating robotic arms and CNC machines, we se-
lected a motion capture-based approach for several compelling
reasons. Motion capture systems provide greater freedom in
generating random 6D poses compared to robotic end effectors
or portable CNC machines, which are typically limited to 4
degrees of freedom unless using expensive 6-axis industrial
equipment. The system easily adapts to different sensor shapes
and their unique safe operating regions. Most importantly,
motion capture enables multiple simultaneous indentations,
which would otherwise require multiple robotic manipulators
at significantly higher cost and complexity.

We implemented an optical motion capture system with 8
PrimeX 13 cameras operating at 120Hz sampling rate. To
maximize accuracy, cameras were positioned 1.5-2m from
the sensor rather than wall or ceiling mounting. Verification

tests confirmed sufficiently low error rates for tactile sensor
calibration.

The entire setup was mounted on an aluminum breadboard
with precise leveling to ensure minimal movement during data
collection. The tactile sensor was fixed at the center, with
remaining area used for calibration markers and reference
points. The breadboard’s pose was continuously tracked to
determine relative position between sensor and indenter.

To simultaneously capture pose and force information, we
developed a modular indentation unit with three main com-
ponents: a replaceable indenter, an ATI Mini45 force/torque
sensor, and a marker module (see Fig. 4, right). The indenter
attaches securely to the force/torque sensor while remaining
easily interchangeable for different contact geometries. The
marker module features 6-7 retroreflective markers in an
asymmetric pattern around the holder, ensuring visibility to
mocap cameras even during partial occlusion from manual
manipulation.

The indentation module origin was calibrated to the indenter
tip, ensuring alignment with simulation values. To prevent data
synchronization issues, multiple ATI sensors were connected
to a single PC. The entire system was integrated with ROS1,
with motion capture operating at 120Hz and ATI force mea-
surements sampled at 200Hz.

During data collection, a human demonstrator holds one or
two indentation modules and applies gentle, random contacts
to the tactile sensor. These contacts produce varied trajectories
while the system records ATI sensor outputs, motion capture
poses for both base and indentation modules, and image
outputs from the vision-based tactile sensor. All collected
data is subsequently analyzed and matched, providing key
inputs for FE analysis and generating corresponding image
or force/torque outputs to maximize experimental efficiency.

This motion capture-based approach offers significant ad-
vantages over traditional robotic or CNC methods, repre-
senting natural, varied 6D motions that would be difficult
to program with most robotic platforms while enabling fast
collection of diverse indentation patterns and multi-contact
scenarios.

B. Creating Diverse Indenter Shapes from YCB Dataset
Vision-based tactile sensors with highly compliant gels

experience significant non-linear deformations during contact,
presenting a unique challenge not found in traditional, stiffer
sensors. While most tactile sensing research uses hard gels
with small deformations (typically 1-4mm), our work explores
much softer materials that enable larger deformations and
potentially richer tactile information. This shift introduces a
critical challenge: neural networks trained with limited inden-
ter geometries—such as commonly used spherical indenters—
tend to memorize specific deformation patterns rather than
learn the underlying physics of large, complex deformations.
This overfitting problem severely limits model generalizability
to novel object interactions and explains why many sensors
avoid very soft gels despite their potential advantages for
sensitivity and compliance matching with delicate objects.

To address this fundamental challenge unique to soft gel-
based tactile sensors, we developed a methodology to create



5

Fig. 4. Left: Collection of diverse 3D-printed indenter shapes derived from
the YCB dataset, showing various geometric features from sharp edges to
smooth curves. Right: Indentation modules used in the motion capture setup,
each equipped with an ATI Mini45 force/torque sensor (base), retroreflective
markers for pose tracking, and an interchangeable indenter (highlighted by
orange circle).

diverse indenter shapes derived from common objects in the
Yale-CMU-Berkeley (YCB) object dataset [45]. By utilizing
varied contact geometries during training, we force the model
to learn more generalizable representations of the relationship
between visual deformation patterns and physical properties
in large deformation regimes.

Our indenter creation pipeline transforms objects from the
YCB dataset into usable indenters for both physical exper-
iments and FE analysis. The process is described by the
following integrated approach:

si = Sphere(pi + d · n⃗i, r) (1)
I = {si ∩M | i = 1, 2, ..., n} (2)

where M represents the original YCB object mesh, pi are
points sampled from the mesh surface with outward-pointing
normals n⃗i that satisfies n⃗i ·(pi−cM ) > 0. n⃗i are the outward-
pointing normals at those points, cM is the centroid of the
mesh, d is the displacement distance (5mm), r is the sphere
radius (15-22mm), and I is the set of all resulting intersection
patches.

To ensure compatibility with both simulation and fabrica-
tion, each extracted intersection patch is standardized. The
patch is aligned to a standard orientation with its contact nor-
mal along the z-axis, scaled by a random factor (350-500) to
achieve appropriate dimensions, and positioned so its highest
point is exactly 44mm from its base. A cylindrical connector
is added to facilitate mounting on the experimental apparatus,
and only the largest connected component is retained to ensure
topological simplicity. For Abaqus compatibility, the processed
meshes are exported in STL format and then converted to
STEP format using FreeCAD, which preserves exact geometry.
During this conversion, we apply a 90-degree rotation around
the X-axis and a 44mm translation to align the indenter
correctly for the Abaqus coordinate system. From the original
25 YCB objects, we selected 12 distinct indenter types that
provide a wide range of geometric features (Fig. 4, left). These
were both 3D printed for physical experiments and integrated
into our simulation pipeline.

This approach offers key advantages for soft gel tactile sens-
ing. Unlike conventional sensors with stiffer materials where
simple indenters may suffice, our compliant gel undergoes

complex deformations that require more sophisticated training.
By training on diverse indentation patterns, the neural network
learns generalizable relationships in the large deformation
regime rather than memorizing specific indenter-deformation
mappings. The same indenter geometries are used in both
physical experiments and simulation, ensuring that sim-to-real
discrepancies are not due to shape differences. The indenters
are easily interchangeable in our physical setup, allowing for
rapid switching between different contact geometries. Most
importantly, the selected indenters span a wide range of
geometric features—from sharp edges to smooth curves, from
flat surfaces to complex contours—challenging the sensor
with varied contact conditions that induce the diverse large
deformations needed for robust learning.

By systematically varying the indenter shapes used in both
simulation and physical experiments, we create a more robust
dataset that enables better generalization of our machine
learning models to novel contact scenarios, addressing a
fundamental limitation that has previously discouraged the use
of very soft gels in tactile sensing applications.

C. Keypoint Extraction for Accurate Motion Simulation

Establishing accurate correspondence between real-world
interactions and FE analysis is critical for developing effective
tactile sensor models. We developed a systematic approach to
extract representative keypoints from continuous motion cap-
ture data, allowing us to faithfully recreate complex indenta-
tion sequences in FE analysis. This approach enables random,
human-guided indentations to be accurately replicated without
requiring precise robot programming. The keypoint extraction
process begins with synchronized data streams from our
motion capture system, force/torque sensors, and vision-based
tactile sensors. For each indentation sequence, we first detect
contact events using a dual-threshold approach. Contact initi-
ation occurs when force magnitude exceeds Fcontact = 1.5N,
and detachment when force drops below Fdetach = 1.1N. To
capture the complete interaction including the approach phase,
we extend each sequence backward by a pre-contact period of
0.3 seconds.

Once contact sequences are identified, we analyze the
six-dimensional pose trajectory (position and orientation) to
extract meaningful keypoints that characterize the motion. We
compute normalized displacements ∆p(t) = p(t) − p(t0)
and orientation changes ∆R(t) = R(t0)

−1 · R(t), where
p(t) represents the position at time t, R(t) represents the
orientation as a rotation matrix, and t0 is the initial time of
the sequence. The orientation difference ∆R(t) is converted
to Euler angles to obtain rotation displacements in a more
interpretable format.

To identify keypoints within this normalized trajectory, we
apply Butterworth low-pass filtering [46] to eliminate high-
frequency noise while preserving essential motion character-
istics. The filter uses cutoff frequency fc = fs/3 where fs is
the motion capture sampling frequency, with filter order set to
1 to avoid over-smoothing.

Next, we extract key motion keypoints by finding the
prominent peaks in each of the six filtered motion signals
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Fig. 5. Keypoint extraction process showing the correspondence between
motion capture data, FE analysis, and actual sensor readings. The trajectory
plots (top right) show extracted keypoints (red dots) from continuous 6D pose
data, while the bottom panels demonstrate how these keypoints translate to
both FE analysis results (top row) and corresponding tactile sensor images
(bottom row) at three different time instances.

(three positional, three rotational), and enforce a minimum
spacing (about 1.5/fimage, where fimage is camera frame
rate) between peaks so that each detected event is temporally
distinct. Keypoints from all six dimensions are combined, with
start and end points always included. To prevent redundancy,
we enforce minimum time differences between consecutive
keypoints and limit the total count when necessary, prioritizing
keypoints with larger motion magnitudes.

This approach yields a set of keypoints {k1, k2, . . . , kn}
that effectively capture the salient moments of the indenta-
tion sequence. For each keypoint, we record the timestamp,
absolute position and orientation of the indenter, position
and orientation relative to the initial pose, corresponding
force/torque readings, and the associated tactile sensor image.
For handling multiple indenters, we detect contact intervals
for each indenter independently and merge these intervals to
identify periods of simultaneous contact, enabling accurate
modeling of complex multi-contact scenarios. Fig. 5 illustrates
this keypoint extraction process, showing how continuous
trajectory data is reduced to critical keypoints that preserve
essential motion characteristics for both simulation and real
sensor correspondence.

The extracted keypoints are crucial for FE analysis for
several reasons. They significantly reduce computational re-
quirements by focusing only on critical trajectory points rather
than simulating entire dense time series. Keypoints preserve
important motion features including direction changes, con-
tact events, and maximum deformations. For multi-step FE
analysis, each step transitions between consecutive keypoints,
creating efficient yet accurate motion representations. This
keypoint-based approach offers substantial advantages over
traditional robotic arm or CNC machine methods for training
data creation, representing natural, varied 6D motions that
would be difficult to program or execute with most robotic
platforms. The system adapts automatically to different gel
shapes without requiring complex trajectory planning for

shape-specific constraints, enabling fast collection of diverse
indentation patterns by leveraging human intuition to explore
the interaction space. Multi-contact scenarios using multiple
indenters can be easily implemented without requiring multi-
ple synchronized robotic manipulators.

For each extracted keypoint sequence, we generate a con-
figuration file serving as input to the FE analysis. This file
contains the initial pose of each indenter relative to the gel
coordinate system and the sequence of displacement vectors
defining motion between keypoints. The simulation proceeds
step-by-step through these keypoints, computing resulting gel
deformation, stress distributions, and contact forces at each
stage.

The comprehensive pose and force information captured at
each keypoint ensures our simulation accurately reproduces
physical interactions, including subtle effects like friction,
stick-slip phenomena, and complex material deformations oc-
curring during real-world tactile sensing.

D. FE analysis of Hyperelastic Material

When the surface of the tactile sensor deforms due to an
external force from contact with an object, the force is dis-
tributed throughout, causing the entire sensor to deform. In this
case, measuring the actual deformation of the tactile sensor
is extremely difficult due to: (1) occlusion by the external
object, (2) the lack of precise measurement tools—such as 3D
scanners—that can capture the deformation without accurate
segmentation of the scanning results, and (3) the minute
magnitude of the deformation. Therefore, the best approach to
estimate the deformation of the sensor is to utilize FE analysis.

FE analysis has been developed over decades and is widely
used to model the actual deformation of real-world materials
at both research and industrial levels. In continuum mechanics,
FEA solves equilibrium problems by discretizing a continuum
into an assembly of smaller elements and approximating the
governing equations over these elements. This approach is
based on balancing each element’s internal forces (stresses)
with the external forces and the resulting deformations.
The linear stress-strain relationships can be expressed using
Hooke’s law as follows:
3∑

j=1

∂σij

∂xj
+ fi = 0, ϵij =

1

2

(
ui,j + uj,i

)
, σij = Cijklϵkl .

The first equation represents the static equilibrium of an
infinitesimal element in three dimensions (with i, j = 1, 2, 3),
ensuring equilibrium in all Cartesian directions. The second
equation defines the strain tensor for small deformations using
linearization, where ui,j = ∂ui/∂xj denotes the gradient of
the displacement field ui(x). The third equation represents
Hooke’s law, with Cijkl being the fourth-order elasticity
tensor. For isotropic materials, the elasticity tensor can be
expressed via Young’s modulus E and Poisson’s ratio ν as

Cijkl =
E

2(1 + ν)
(δikδjl + δilδjk) +

Eν

(1 + ν)(1− 2ν)
δijδkl .

This formulation shows that the linear stress–strain rela-
tionship is governed by two independent material constants.
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Assuming a linear stress–strain relationship and small defor-
mations, the FE analysis using the above equations is math-
ematically convenient. However, this approach is insufficient
for describing real-world materials when deformations become
large. Materials used in the fabrication of tactile sensors,
such as silicone and rubber, can sustain large elastic defor-
mations that exhibit a nonlinear stress–strain response. Even
for moderate strains, these materials tend to be much softer
at low strains and become stiffer at higher elongations. Such
materials, known as hyperelastic or Green elastic materials,
require nonlinear material models. In other words, tactile
sensors with high deformability require nonlinear material
models for accurate FE analysis.

Hyperelastic models account for large deformations in soft
materials—such as silicone and rubber-like materials—which
exhibit no plasticity. Although a hyperelastic material displays
elastic properties such as no energy loss and path-independent
unloading, its stiffness and tangent modulus vary with strain;
in other words, the material can stiffen or soften as it deforms.
Therefore, the stress in a hyperelastic material should be
derived from a strain energy density function W (I1, I2, I3),
rather than relying solely on Young’s modulus and Poisson’s
ratio, where Ii denotes the principal invariants of the right
Cauchy–Green deformation tensor:

I1 = tr(C) = λ2
1 + λ2

2 + λ2
3 , (3)

I2 = 1
2

[
(trC)2 − tr(C2)

]
= λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

1λ
2
3 , (4)

I3 = J2 = det(C) = λ2
1 λ

2
2 λ

2
3 = (λ1λ2λ3)

2 . (5)

Here, I1 relates to the change in total stretch (length), I2
corresponds to area distortions, and I3 = J2 is the square
of the volume ratio, with J = detF representing the total
volume change. For incompressible materials, J = 1 (and
thus I3 = 1) is fixed. Moreover, C = FTF = U2 is the right
Cauchy–Green deformation tensor, where F is the deformation
gradient with components Fij = ∂xi/∂Xj for the deformed
coordinates x and the reference coordinates X. The quantities
λi are the principal stretch ratios, which are the eigenvalues
of the right stretch tensor U.

By using different combinations of these invariants to
represent a strain energy density function W , it is possible
to accurately model the hyperelastic properties of materials.
The stress tensor is derived from W through the relationship
σ = 2

JF
∂W
∂C FT , where the derivatives of W with respect

to the deformation invariants determine the material’s stress
response.Several approaches have been developed to express
W , either phenomenologically or mechanistically:

Neo-Hookean [47]: W = C1 (I1 − 3) , (6)
Mooney-Rivlin [48]: W = C1(I1 − 3) + C2(I2 − 3) , (7)

Ogden [49]: W =

N∑
p=1

µp

αp

(
λ
αp

1 + λ
αp

2 + λ
αp

3 − 3
)
, (8)

Yeoh [50]: W =

n∑
i=1

Ci(I1 − 3)i +
1

D1
(J − 1)2 . (9)

Here, Ci, µp, αp, and D1 are empirical material constants.
Among the hyperelastic models, the Yeoh model stands out

Fig. 6. The application of frameworks on various sensors. The real-to-sim
framework is easily expandable to various shape of the optical tactile sensors
with appropriate boundary condition.

for its applicability in the FE analysis of silicone rubber
in tactile sensors, particularly when dealing with significant
deformations. While simplified models like the Neo-Hookean
model or linear elasticity, as seen in previous tactile sensing
studies [39], [51], are computationally efficient, they often
fail to accurately represent the material behavior of sensors
experiencing large strains. In tactile sensing, even seemingly
small displacements can lead to large local strains in sensor
materials, thereby impacting the accuracy of shape and force
reconstruction. The Yeoh model, with its ability to capture
the nonlinear stress–strain relationship and strain-hardening
behavior of elastomers with a relatively small number of
parameters, offers a more robust solution for FE analysis.

Compared to other higher-order models such as the Ogden
model, the Yeoh model presents a more practical choice
for tactile sensor applications. Although the Ogden model
can achieve high accuracy with ample experimental data,
its excessive parameterization can lead to overfitting and
numerical instability, particularly when applied to complex
sensor geometries or limited experimental datasets common in
tactile sensing research. The Yeoh model relies only on the first
invariant I1, providing a good balance between accuracy and
computational cost. This is particularly valuable in situations
where full multi-axial testing is not feasible, such as in the
case of human tissue [52]. Similarly, the Yeoh model’s ability
to accurately model elastomer behavior across various strain
levels makes it an ideal candidate for silicone elastomeric
gels, allowing for more reliable shape estimation and force
reconstruction compared to simpler, less accurate models.

E. FE Analysis Simulation Setup

The FE analysis model was implemented using Abaqus
2024 [53] to simulate the mechanical response of tactile sen-
sors under various indentation scenarios. The gel component
was modeled based on CAD files extracted from each sensor’s
specifications. These geometries were either determined from
available STL files or defined through physical molds of the
gel. For sensors with a three-dimensional hemispherical shape,
we partitioned the gel volume using strategically placed datum
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Fig. 7. Conversion of 3D FE analysis results to 2D tactile image representa-
tions. The left side shows 3D displacement fields (X, Y, Z components) from
the deformed gel simulation, while the right side displays the corresponding
2D image encodings for displacement, normal stress, shear stress, contact
normal forces, and contact shear forces used for neural network training.

planes to facilitate controlled mesh generation. Specifically, for
the hemispherical gel geometries, we created a comprehensive
partitioning scheme with horizontal planes at specific heights
relative to the gel’s total height. Three equally distributed
datum planes were created along the vertical axis, with the
topmost plane adjusted to approximately two-thirds of the
maximum height to avoid creating excessively thin sections
near the apex. Additionally, we created angular partitions
by generating rotational datum planes at 45-degree intervals
around the vertical axis, starting from an initial YZ reference
plane. This approach allowed for systematic cell partitioning
that accommodated the curved geometry.

For computational efficiency, we simplified the gel model
to a single homogeneous silicone material, omitting the thin
reflective surface layer typically present in vision-based tactile
sensors. This simplification is justified as these reflective
layers and the applied pattern underneath are extremely thin
compared to the bulk gel material and have minimal impact on
the overall mechanical response. The reflective layer serves to
block external light and enhance contrast for the vision system,
but its mechanical contribution to deformation is negligible.

The gel material was modeled using the Yeoh hyperelastic
constitutive model, which effectively captures the nonlinear
elastic behavior of silicone rubber under large deformations.
Material parameters were either directly specified in the
configuration file or derived from experimental uniaxial and
biaxial test data when available. The material density was set
to 1.07 × 10−9 (in consistent units), representing the typical
density of silicone elastomers used in tactile sensors.

The friction coefficient between the indenter and gel surface
was set to 2.2 based on findings from [54], who investigated
silicone rubber friction characteristics. This relatively high
friction value accurately represents the sticky nature of silicone
surfaces. The contact interaction was defined using a penalty
formulation with normal “hard” contact that allows separation
after contact and prevents penetration during compression.

The simulation was configured to extract comprehensive
mechanical response data, including stress tensors, strain com-

ponents, displacements, reaction forces, and detailed contact
information. These output variables provide a complete picture
of the gel’s deformation behavior and the resulting tactile
response. Specifically, we requested field outputs for stress
(S), strain (E), displacement (U), reaction forces (RF), rotation
(UR), and numerous contact variables (CNAREA, CNORMF,
CSHEAR, CPRESS, CSTATUS) to characterize the contact
interface completely.

For element selection, the indenter was modeled as a
discrete rigid surface (R3D3 and R3D4 elements) since the
3D-printed PLA material used for physical indenters is sig-
nificantly stiffer than the silicone gel, resulting in negligible
deformation of the indenter compared to the gel. The gel was
modeled using C3D8H hybrid elements for hexahedral re-
gions, with C3D6 (6-node wedge) and C3D4 (4-node tetrahe-
dral) elements used where geometrically necessary. The hybrid
formulation is particularly suitable for nearly incompressible
hyperelastic materials like silicone.

Boundary conditions were carefully implemented to accu-
rately represent the physical setup. The bottom surface of the
gel was fully constrained with an encastre boundary condition
(all translational and rotational degrees of freedom fixed),
reflecting the typical mounting of tactile sensors on rigid
supports. This was implemented by selecting nodes within
a small tolerance (0.1 mm) of the XZ plane and applying
fixed constraints, ensuring proper anchoring without over-
constraining the model.

The assembly and simulation steps were configured based
on extracted pose keypoint data. For each indenter, the ref-
erence position and orientation were established through a
sequence of translations and rotations defined by the configura-
tion data. The indenter motion was controlled through a series
of displacement boundary conditions applied to the reference
point of each rigid indenter. These displacement vectors were
derived from motion capture or tracking data obtained from
physical experiments, ensuring that the simulation accurately
reproduces real-world indentation sequences.

Our mesh generation strategy was optimized to balance
computational efficiency with solution accuracy. We imple-
mented a non-uniform mesh density distribution with finer
elements (approximately 0.7 mm characteristic length) near
the gel surface where contact occurs and more detailed stress-
strain information is needed. This gradually transitioned to
coarser elements (approximately 2.0 mm) in the interior re-
gions where stress gradients are less severe. This approach
significantly reduced computational demands without compro-
mising the accuracy of tactile information at the sensor surface.
The transition between mesh densities was controlled using
a size growth rate of 1.97, allowing for smooth transitions
between regions of different mesh density.

A key aspect of our implementation is the capability to
simulate multiple indenters simultaneously, which is essential
for realistic tactile sensing during dexterous manipulation.
Most real-world manipulation scenarios involve contact with
multiple surfaces or objects, and our model seamlessly accom-
modates this complexity. Each indenter can follow independent
trajectories with six degrees of freedom (three translational and
three rotational), enabling the simulation of complex interac-
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tion scenarios such as multi-finger grasping or manipulation
involving multiple contact points. The displacement sequences
for each indenter are managed through separate boundary
condition specifications that can be updated independently at
each simulation step.

The simulations were executed on a high-performance com-
puting setup utilizing 20 CPU cores and 2 RTX 4090 GPUs,
which enabled efficient processing of the computationally in-
tensive nonlinear analyses. Each simulation step was carefully
monitored through Abaqus message files to ensure proper
convergence and solution quality. Upon completion of the
simulations, comprehensive data extraction was performed to
capture the complete state of the model at each time increment.
This includes exporting deformed meshes as STL files and
detailed nodal and elemental results as CSV files, facilitating
further analysis and visualization.

The frame-by-frame data extraction approach enables pre-
cise temporal correlation between simulation results and real-
world experimental data, which is crucial for validation and
for developing accurate mappings between physical sensor re-
sponses and simulated mechanical states. This comprehensive
data set forms the foundation for advanced tactile sensing
algorithms and enables physics-based interpretation of sensor
outputs during complex manipulation tasks.

F. Data Extraction with Dynamic Baseline Image Adaptation

Accurate tactile sensing requires establishing precise corre-
spondences between the deformed gel image, the undeformed
reference state, and the 3D physical world. We developed
systematic methods to address two critical aspects of this cor-
respondence: dynamically maintaining an appropriate baseline
(undeformed) image despite hysteresis effects, and mapping
between 2D image coordinates and 3D gel surface coordinates.

Vision-based tactile sensors detect deformation by compar-
ing the current (deformed) image with a reference baseline
image representing the undeformed state. However, silicone
gels exhibit hysteresis—they do not immediately return to their
original shape after deformation but rather recover gradually
over time. This creates a fundamental challenge: using a single
static baseline image would introduce increasing errors as the
gel’s resting state evolves throughout repeated interactions.

To address this challenge, the baseline of undeformed image
is dynamically adapted to continuously monitor the gel’s
state and update the reference image when appropriate. We
first establish a master baseline by capturing the gel in its
initial undeformed state. For robustness, we capture multiple
frames and select the most stable representation by comparing
consecutive images with W and H as width and height of the
images:

MSE(I1, I2) =
1

WH

W−1∑
x=0

H−1∑
y=0

(
I1(x, y)− I2(x, y)

)2

, (10)

Next, We continuously evaluate the gel’s state using MSE
between the current image and master baseline, plus force
magnitude from the force/torque sensor. Based on these met-
rics, we classify three states: contact (high MSE, force above
threshold), detachment (force below threshold but gel may not

Fig. 8. 2D-3D correspondence mapping between image coordinates and
physical contact points on the gel surface.

have recovered), and stable (low MSE, suitable for baseline
update). During the detachment state, we monitor image sta-
bility. If MSE remains below a threshold (MSEthreshold = 8)or
sufficient time, we update the current baseline to this new
stable state.

This adaptive approach ensures that even after interac-
tions causing temporary or permanent deformations, the sys-
tem maintains an accurate reference for detecting new con-
tacts—essential for reliable force and deformation estimation
during extended manipulation tasks.

G. 2D-3D Correspondence Mapping

Another critical challenge is establishing the mapping be-
tween 2D image coordinates and 3D physical coordinates
on the gel surface. This mapping is essential for precisely
localizing contacts and accurately estimating forces and de-
formations.

We developed a systematic calibration procedure that estab-
lishes this mapping through controlled physical measurements.
First, we identify the gel center in the image plane by
analyzing motion capture data from the experimental setup,
identifying the highest point of the gel, and projecting it onto
the image plane. We refine this center point through visual
validation and interactive adjustment to account for any minor
misalignments between the camera and gel.

Next, we collect correspondence points by gently poking the
gel surface at various locations using a calibrated probe. For
each poke, the 3D position of the contact point is recorded
using the motion capture system, the corresponding 2D lo-
cation in the tactile sensor image is identified by detecting
local deformation, and multiple pokes are performed to ensure
uniform coverage of the gel surface.

From these correspondence points, we establish a map-
ping between spherical coordinates in 3D space and image
coordinates. We represent the 3D surface using two angular
coordinates: θ, the angle from the vertical axis (related to
the radial distance in the image), and ϕ, the azimuthal angle
around the vertical axis (related to the angular position in the
image). We use Gaussian Process Regression (GPR) to learn
the relationship between image coordinates and these spherical
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coordinates:

dist =
√
(x− xc)2 + (y − yc)2, (11)

θ = fGPR(dist), (12)
ϕ = arctan 2(x− xc, y − yc), (13)

where (xc, yc) is the center of the gel in the image plane.
This approach accounts for the non-linear relationship between
image distance and the corresponding angle on the gel surface.

The resulting mappings are stored as dense lookup tables,
θmask and ϕmask, which provide the corresponding spherical
coordinates for each pixel in the image.

The 2D-3D correspondence mappings are illustrated in
Fig. 8 and Fig. 7. The first row of Fig. 8 demonstrates the
correspondence between image and real-world contact points.
The second row shows how, based on GP regression, predicted
stress tensor images can be mapped into pointclouds where
each point contains stress tensor values encoded as RGB val-
ues. The final column illustrates the correspondence from sim-
ulation to training dataset as 2D images. This correspondence
enables precise localization of contacts in 3D space from 2D
image features, supports accurate geometric interpretation of
visual deformations, facilitates registration between simulation
outputs and actual sensor images, and allows transformation
between contact frames and world coordinates.

The 2D-3D correspondence ensures that our neural network
models can effectively learn the relationship between visual
patterns and physical quantities like force and displacement.
By addressing both the temporal evolution of the baseline
state and the spatial mapping between image and physical
coordinates, our approach provides a robust foundation for
accurate tactile sensing across diverse interaction scenarios.

H. Force and Deformation Field Mapping

Establishing accurate correspondence between 3D simu-
lation outputs and 2D tactile images requires a sophisti-
cated approach to data representation and transformation.
Our method converts the dense 3D FE analysis results from
Abaqus into spatial force and displacement fields that can
be directly compared with tactile sensor images. The trans-
formation process begins by applying our previously es-
tablished 2D-3D correspondence maps (θmask and ϕmask) to
convert between image coordinates and spherical coordinates
on the gel surface. For each simulation output frame, we
extract comprehensive mechanical data including stress tensors
(σxx, σyy, σzz, σxy, σxz, σyz), displacement vectors
(dx, dy, dz), and contact information (CNAREA, contact
normal forces (Fn,x, Fn,y, Fn,z), and contact shear forces
(Fs,x, Fs,y, Fs,z)).

To create accurate mapping between simulation nodes and
the tactile sensor image, we employ a multi-stage process:
First, we build a spatial k-d tree [55] from the 3D positions
of all simulation nodes. For each vertex in the gel’s surface
mesh, we find the nearest simulation node using this tree and
transfer the mechanical properties from the simulation data to
the mesh vertex. This creates a dense sampling of mechanical
information across the entire gel surface.

Using our previously established 2D-3D correspondence
maps, we create a regular grid defined by the phi and theta
coordinates that represents the 2D layout matching the tactile
sensor’s view. We then use linear interpolation methods to
map the scattered simulation data onto this grid. To handle
the circular nature of the phi coordinate, we extend our data
by replicating points with adjusted phi values, ensuring smooth
and continuous interpolation even at boundaries.

This ensures that interpolation near the boundary correctly
considers points from both sides of the discontinuity. From
these interpolated fields, we create five distinct types of
force/deformation visualizations:

• Normal stress images: RGB channels represent normal
stress components σxx, σyy, σzz

• Shear stress images: RGB channels represent shear stress
components σxy, σxz, σyz

• Displacement images: RGB channels represent displace-
ment components dx, dy, dz

• Contact normal force images: RGB channels represent
contact normal force components

• Contact shear force images: RGB channels represent
contact shear force components

Fig. 7 illustrates this transformation process, showing how the
3D displacement fields from FE analysis are converted into
the corresponding 2D image representations used for training
our neural network models.

For each field type, we apply Gaussian smoothing
(σstddev = 2) to reduce noise and enhance visual coher-
ence. We normalize each channel using both global statistics
(derived from the entire dataset) and local statistics (specific
to each image). The global normalization ensures consistent
interpretation across the dataset, while local normalization
enhances contrast for individual images.

This method transforms detailed 3D simulation results into
clear 2D images. By matching every mesh vertex to a specific
location on a 2D grid that mirrors the tactile sensor’s camera
view, it preserves the contact information from 3D space.
2D image representation enables direct comparisons between
simulated data and real tactile measurements, while also
maintaining consistent spatial relationships and mechanical
information across the dataset.

For multi-indenter scenarios, we track which gel surface
nodes are in contact with each indenter. When multiple inden-
ters make contact simultaneously, we apply k-means clustering
to group contact points and assign each cluster to the nearest
indenter. This allows us to correctly attribute contact forces to
the appropriate indenter, ensuring accurate force reconstruction
even during complex interaction scenarios.

The final step involves storing the mapping bounds for each
image type in a JSON file, which records the minimum and
maximum values used for normalization. These bounds are es-
sential for consistent interpretation during model training and
inference, allowing the neural network to properly understand
the relationship between pixel values and physical quantities.

I. Bridging Sim-to-Real Using Sensor Measurements
To bridge the gap between simulation and reality, we devel-

oped a systematic force calibration method that leverages the
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Fig. 9. The top row illustrates our self-supervised pretraining: masked or partial tactile images are passed through the Hiera encoder and a ViT-style decoder
to reconstruct the full sensor observation. The bottom row shows the fine-tuning stage, where the pretrained Hiera backbone is paired with the proposed
Q-Upsample decoder and separate lightweight convolutional heads to produce dense per-pixel predictions of displacement, contact forces, and stress tensors.

ATI force/torque sensor measurements to refine the simulation
outputs. This calibration is critical for achieving accurate force
estimation in practical applications, as it accounts for differ-
ences between idealized simulation conditions and real-world
physical interactions. Our calibration approach addresses sev-
eral key challenges in tactile sensing: the coordinate frame
mismatch between the ATI sensor and the global reference
frame, variations in contact mechanics between simulation and
reality, and the distribution of forces across multiple contact
points. The resulting calibrated data provides a more reliable
ground truth for training neural networks. The calibration pro-
cess begins by transforming force measurements from the ATI
sensor’s coordinate frame to the global reference frame using
Fglobal = Rati to global ·Fati, where Rati to global is the composite
rotation matrix combining the ATI-to-indenter and indenter-
to-global transformations. This transformation accounts for the
orientation of both the sensor mounting and the indenter itself.

Once we have the global-frame forces from the ATI sensor,
we compare them with the reaction forces computed by
Abaqus and compute component-wise offset ratios. For each
active indenter, we extract the simulation reaction forces (RF-
RF1, RF-RF2, RF-RF3) and calculate ri =

−Fsensor,i
Fabaqus,i

, where the
negative sign accounts for the convention difference between
sensor measurements and simulation reaction forces. These
offset ratios are then directly applied to correct the contact
force components. These offset ratios are then applied to
correct the contact force components:

Fnormal,i = Fabaqus, normal,i · ri (14)
Fshear,i = Fabaqus, shear,i · ri (15)

Where Fnormal,i and Fshear,i are corrected contact normal
force and contact shear force.

For multi-indenter scenarios, the calibration becomes more
complex as we need to identify which contact points corre-
spond to each indenter. We solve this by clustering the contact
points based on their spatial distribution and assigning each
cluster to the nearest indenter. The appropriate offset ratio
is then applied to each contact point based on its assigned
indenter.

This calibration approach accounts for systematic differ-
ences between simulation and reality such as material prop-
erty variations and friction discrepancies, ensures consistency
between external sensor measurements and tactile-based es-
timates, and provides more accurate ground truth for neural
network training.

To bridge the sim-to-real gap that inevitably exists between
simulation-based predictions and real-world measurements,
we implement a force correction methodology that requires
minimal calibration points. The correction pipeline captures
synchronized pairs of model-predicted forces and ground-
truth measurements across various contact locations, along
with corresponding 2D contact positions in the image plane.
A random forest regressor with zero-constraint enforcement
learns the mapping between those paired measurements with
consideration of both the magnitude and position-dependent
aspects of the force difference. This approach effectively
compensates for systematic errors from material property
variations, minor differences in sensor construction, and sensor
aging effects. This calibration procedure can be performed
with as few as 5-7 measurement points and stored for ongoing
use, providing robust correction that maintains accuracy even
as environmental conditions change.

J. Learning Sensor Model

We train a model Y = fθ(X) ∈ RH×W×C to jointly
predict dense output for displacement, contact force, and stress
tensors, as shown in Fig. 9.

Contrary to prior works that leverage large vision trans-
formers (ViTs) [30], [38], we choose the smaller hierarchical
vision transformer Hiera [43] as the encoder. Hiera removes
components of existing hierarchical ViTs that slow it down and
hinder its performance compared to vanilla ViTs and CNNs,
and creates a lightweight encoder that consistently outperforms
standard ViTs. Hiera is an attractive encoder for dense tensor
reconstruction, as it naturally learns features at multiple scales,
allowing for learning of low level features at a high spatial
resolution, and high level features deeper in the network.
Paired with an expressive decoder, this suggests Hiera to be
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useful for reconstructing full deformation and stress tensor
without losing information.

Decoding information from the multi-level features of Hiera
requires leveraging the features without loss of information.
Prior work, such as the DPT head [56] upsamples features
from the coarse level and fuses with fine level predictions. The
DPT head requires a vanilla ViT, which needs extra operations
to preserve the spatial proximity of ViT patches. However,
because Hiera preseves the 2D structure in each stage, we
propose a Q-Upsampling module to naturally decode multi-
level Hiera features.

Concretely, we take spatial features from Hiera and feed
them through an attention block, which ensures that relevant
spatial regions of a tactile image are properly focused on
at different levels. We then fuse the output features with
features of the same dimension from the encoder. This enables
for retaining of fine-grain details deeper into the decoder.
Altogether, the proposed encoder-decoder structure requires
minimal operations done to the encoder features, similar to
traditional CNN-based U-Nets [57]. At the end of a network,
we construct multiple convolution heads for each modality,
including displacement, normal force, shear force, shear stress,
and normal stress, leading to a 15-dimensional spatial output.

K. Contact Clustering and Force Distribution Analysis

To effectively detect and characterize multi-contact inter-
actions with objects of varying properties, we developed a
clustering methodology based on the force field outputs from
the calibrated sensor. From the contact forces information
across the sensor surface, the distinct contact regions are kept
tracked.

From preset force magnitude threshold (typically 0.005N),
we first apply a binary contact mask based on the force mag-
nitude from contact shear and normal force. Once the contact
mask is generated, we apply connected component analysis
using an 8-connectivity structure to identify distinct contact
regions. For each identified cluster, we compute centroid, size,
total force, and magnitude of the cluster.

To enhance robustness for sensor-based control, we incor-
porate additional geometric and force-based metrics for each
cluster, including perimeter length, and circularity. For using
the cluster info for control, we prioritize clusters based on both
force magnitude and spatial consistency.

L. Analysis of Contact Workspace and Optimal Fingertip Pose
Selection

We analyze the contact workspace for two-finger control
to determine optimal joint configurations that maximize dex-
terity while ensuring reliable tactile sensor integration. This
analysis is critical for integrating calibrated sensor outputs into
precise manipulation control schemes. Joint configurations are
sampled within their respective limits, and forward kinematics
computes fingertip positions and orientations. The manipula-
bility measure, metrics introduced by [58], is evaluated as
w =

√
det (JJT ), where high w values indicate dexterous

configurations responsive to joint variations.

Collision detection using the hpp-fcl library [59] approxi-
mates each fingertip as a sphere with 10mm radius and contact
is assumed when the collision distance satisfies dFCL ≤ 1mm.
The contact point and normal are computed as:

pc =
1

2
(pthumb + pindex) , n =

pthumb − pindex

∥pthumb − pindex∥
.

Configurations are filtered by distance (d ≤ 0.06 m for
effective pinching) and fingertip alignment computed via
alignment = zthumb · zindex, where near-zero or negative values
indicate favorable pinching conditions.

For tactile sensor integration, we adopt the strategy of
determining optimal sensor pose on existing manipulators
rather than designing custom sensors, allowing compatibility
across multiple hand designs. We identify thumb poses (pitch
angle and vertical offset) that maximize both manipulability
and tactile sensor effectiveness.

The optimization process systematically sweeps through
candidate thumb poses by modifying the URDF with discrete
increments of pitch and z-offset. Each variant is evaluated by
counting stable thumb-index contacts (via collision checks)
and computing manipulability scores. We seek configurations
providing high mean manipulability and large sets of contact
points aligned along a principal axis suitable for grasping.

Principal axis computation uses RANSAC-like cylinder fit-
ting to identify the 3D line maximizing contact points within a
1 cm radius. This “best inlier axis” represents the most reliable
thumb-index opposition direction. The number of inlier points
serves as a proxy for robust contact establishment across
diverse configurations.

The final selection balances two metrics: mean manipula-
bility (reflecting thumb dexterity) and total principal inliers
(indicating consistent contact reliability). As shown in Figure
18, the configuration with z = 4.3 cm and pitch = 0.0◦ yields
the largest set of well-aligned contact points while maintaining
competitive manipulability.

This thumb pose selection is critical for robust sensing and
dexterity. The embedded tactile sensor must maintain stable
contact across various grasps while maximizing manipulability
for effective maneuvering. Few existing hand designs optimize
vision-based fingertip sensor placement for both sensing and
kinematic performance, often resulting in suboptimal usage.
Our systematic evaluation of contact configurations and ma-
nipulability demonstrates improved tactile data quality and
overall hand dexterity, enabling subsequent tasks like selective
string grasping and force difference detection.

IV. RESULT

To verify the framework of TensorTouch, we verified each
step of the framework - first, we designed an optical tactile
sensor to verify the effectiveness of TensorTouch, next, using
the proposed framework, we collected and processed a dataset
pair for training the network. Finally, we report various net-
work architectures, including our proposed one, to estimate
the stress tensor, displacement, and contact force from FEA.
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Fig. 10. Proposed sensor design for TensorTouch. This modular layout shares
the components common to general optical tactile sensors.

A. Optical Tactile Sensor and Gel Configuration

We propose a modular sensor design that enables easy
simulation of different gel configurations without significant
hardware modifications. This design reduces simulation com-
plexity while improving accuracy by maintaining consistent
boundary conditions across various sensor geometries.

As shown in Fig. 10, the sensor features a modular architec-
ture where gel components can be easily swapped while keep-
ing other parts unchanged. The design incorporates standard
optical tactile sensor features with a 3D hemispherical shape,
ensuring compatibility with existing sensor frameworks.

The gel requires full-surface attachment to the camera-LED
module, which is crucial for maintaining consistent simulation
boundary conditions common to most vision-based tactile
sensors. While partial attachment is theoretically possible,
full attachment ensures both sensor durability and simulation
accuracy. Therefore, we fabricated a flat gel bottom surface
that directly attaches to the lens and illumination components.

The illumination system consists of 9 LEDs arranged around
a 220-degree fisheye lens, providing complete coverage of the
sensor surface including edges. Clear acrylic boards prevent
direct LED-gel contact while maximizing attachment area. The
fisheye lens ensures comprehensive surface monitoring even
during large deformations.

The two-part chassis design serves distinct functions: the
inner chassis supports the sensor load and houses LED/acrylic
components, while the upper chassis provides press-fit mount-
ing for the camera-LED module. This separation enables
modularity and allows easy gel replacement without affecting
other components. Importantly, sensor loads transfer to the
LED/acrylic components rather than directly to the camera,
with the bottom chassis attached to the camera edge for
structural support. To reduce complexity, LEDs draw power
from the camera’s USB port, eliminating additional wiring
requirements.

We tested different gel softness levels to demonstrate Ten-
sorTouch framework generalizability, with mechanical prop-
erties verified through testing (detailed in appendix). Gel
attachment utilizes a combination of Loctite Power Grab
adhesive and Sil-poxy for secure bonding. The flatter gel shape
was selected over pure hemispherical geometry to demonstrate
framework effectiveness across both flat and curved sensor
configurations, showing broader applicability to various tactile
sensor designs.

This modular approach enables researchers to adapt the

framework to different sensor requirements while maintaining
calibration accuracy and simulation fidelity.

B. Simulation Result

Fig. 11. Distribution of force and displacement measurements of the dataset.
The top row (a-c) shows force components in the X, Y, and Z directions
measured in Newtons. The bottom row (d-f) shows displacement components
in the X, Y, and Z directions measured in millimeters.

Fig.11 shows the distribution of the collected and matched
datasets. A total of 39,371 datapairs were collected for the
sensor with extra-soft gel, while 38,079 datapairs were col-
lected for the sensor with soft gel. Each dataset includes four
sensors with the same gel softness. During data collection,
approximately 7-9 trials were conducted, each lasting about
five minutes. Every trial comprised around 100-200 indenta-
tion trajectories, each using a different indenter shape; some
trials even involved more than one indenter.

After collecting the datasets and extracting keypoints for
each indentation trajectory, finite-element simulations were run
based on those keypoint poses. Simulating a single indentation
trajectory required roughly 6-8 minutes - depending on the
number of steps - to process and import all associated stress
tensors, displacements, and contact-force data.

C. Network Estimation Result
Using the collected dataset, an ablation study is conducted

across various network architectures to verify the effectiveness
of stress tensor estimation from sensor images. As shown in
Table I, the proposed Hiera-based model is compared with
several baselines including DenseNet, ResNet, and different
Vision Transformer configurations.

While the proposed model consists of Hiera with Q-
upsampling architecture to perform cross-attention between
different resolution levels to generate dense pixel-wise pre-
dictions, the other baselines show existing effective network
models. The DenseNet baseline, based on the DenseNet-
161 architecture [60], has demonstrated effectiveness in sen-
sor deformation estimation [36] and uses densely connected
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Network Structure Params PSNR (↑) SSIM (↑) MSE (↓) AUCrel (↑) FPRrel (↓)

Hiera with Q-upsampling 76 M 55.9756 0.99066 2.76×10−6 0.85499 0.01852
DenseNet 80 M 53.9215 0.98936 4.12×10−6 0.82255 0.02501
ResNet 113 M 52.0419 0.98783 6.26×10−6 0.80451 0.02896
ViT Encoder 114 M 46.8280 0.98831 2.09×10−5 0.82149 0.02650
ViT DPT 144 M 44.2347 0.82281 3.79×10−5 0.08199 0.21833
Hiera with Vit Decoder 191 M 46.9025 0.98942 2.05×10−5 0.785961 0.037147

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT NETWORK ARCHITECTURES.

convolutional blocks with skip connections to preserve fine
spatial information. The ResNet baseline uses the ResNet-
152 backbone, [61] which contains residual connections. We
also evaluated a standard Vision Transformer (ViT) encoder
[62] without the sophisticated upsampling mechanisms. The
last evaluation baseline consists of ViT encoder with Dense
Prediction Transformer (DPT) decoder [63] combination to
show the effectiveness of the selected decoder.

All baseline models were trained under the same conditions
to ensure fair comparison. We employed the AdamW opti-
mizer with a learning rate of 0.001 with a linear cosine anneal-
ing schedule with 500 warmup steps. Models were trained with
L1 loss for 200-250 epochs depending on convergence, while
choosing best model to avoid overfitting. The batch sizes are
set to 64 for most models and 96 for ResNet due to memory
requirements. For the Hiera/ViT models, we perform the same
pretraining process with masked autoencoder reconstruction
[64], which has proven to lead to effective representations
for downstream tasks, similar to T3 and Hiera [43], [65],
before fine-tuning on the stress tensor estimation. During
pretraining, 75% of the input patches from 6-channel are
randomly masked.

The reported metrics in Table I represent averaged per-
formance across all five output modalities produced by each
network head - displacement, normal and shear stress distri-
butions, and contact normal / shear force distributions. Each
model generates these five distinct images simultaneously
and the metrics computed individually for each modality and
then averaged to each metrics. The proposed metrics include
Peak Signal-to-Noise Ratio (PSNR), structural similarity index
measure (SSIM), and mean-squared error (MSE). The FPR rel
metric measures the fraction of samples that relative error is
more than 100% of the ground-truth value, i.e. the fraction
of predictions that are off by more than the true value. The
AUC rel metric measures the area under the curve for relative
error behavior, indicating how well the model performs across
different accuracy requirements. A higher AUC rel suggests
the model maintains good performance across the full range
of relative error tolerances.

DenseNet, despite having comparable parameter count
(80M), achieves significantly lower performance with PSNR of
53.92 and AUC rel of 0.82255. The ResNet architecture, with
the highest parameter count (113M), shows even more limited
performance (PSNR: 52.04, AUC rel: 0.80451), suggesting
that simply increasing network depth does not effectively
address the challenges of tactile force field estimation.

However, the ViT DPT baseline performs poorly across

all metrics, particularly in SSIM (0.82281) and AUC rel
(0.08199), with a very high FPR rel (0.21833) because of
false positive estimation on shear stress measurement. Fur-
thermore, Hiera with vanilla ViT decoder underperforms our
Q-Upsampling approach across all metrics despite using 191M
parameters versus 76M. This indicates that while transformer
architectures show promise, the specific design of the de-
coder and multi-scale feature fusion is critical for dense,
multi-channel prediction tasks in the tactile domain. Hiera
with Q-Upsampling approach demonstrates the best perfor-
mance from the overall metrics.

D. Qualitative Result of TensorTouch
Fig. 12 demonstrates the comprehensive multi-channel tac-

tile sensing capabilities of our calibrated model through a rep-
resentative interaction between a planar surface and a card-like
object, resulting in two distinct contact patches. Each column
in the visualization grid represents different physical quantities
extracted from a single tactile image: displacement fields
(dx, dy, dz), contact normal forces (Fn,x, Fn,y, Fn,z), con-
tact shear forces (Fs,x, Fs,y, Fs,z), normal stress components
(σxx, σyy, σzz), and shear stress components (σxy, σxz, σyz).
The relationship between contact forces and stress tensors
reflects fundamental continuum mechanics principles: contact
forces represent the integrated effect of stress distributions
over the contact area, while stress tensors capture the internal
material response at each point. Specifically, contact normal
and shear forces are derived from the corresponding stress
components multiplied by the local contact area and appro-
priate offset ratios, explaining why both quantities exhibit
similar spatial patterns but with contact forces showing more
localized, concentrated distributions at the actual interface
regions.

The spatial distribution of these quantities reveals important
tactile sensing characteristics, particularly how contact forces
naturally encode contact area information. In regions without
physical contact, both force and stress values approach zero,
appearing as orange or red coloring in the relative intensity
visualization. This inherent contact area encoding makes the
force estimates particularly valuable for manipulation tasks,
as they directly indicate where and how strongly objects are
interacting with the sensor surface. The right panels of the
figure demonstrate the 3D interpretation capability through our
2D-3D correspondence mapping, showing how the estimated
quantities can be projected into a point cloud representation
where each point contains the full stress tensor and displace-
ment information encoded as RGB values. This visualization
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Fig. 12. Visualization of multi-channel tactile sensing outputs generated by our calibrated model from a single tactile image (top right). The left panels show
predicted physical quantities across three coordinate axes (X, Y, Z from top to bottom): displacement fields, normal stress distributions, contact normal forces,
contact shear forces, stress tensor components, and integrated contact forces. The bottom right image demonstrates successful identification of two distinct
contact regions with their corresponding force magnitudes and centers, enabling multi-contact tracking.

confirms that our framework successfully captures the complex
multi-contact scenario with two distinct interaction regions,
each characterized by its own force magnitude, direction, and
contact geometry, enabling the precise multi-contact tracking
essential for advanced dexterous manipulation tasks.

V. EVALUATION

The evaluation of sensor has been conducted in two direc-
tions - first, the position and force of cluster from the sensor
are compared with the actual position and force collected from
motion capture system and ATI F/T sensor. Next, to verify the
usefulness of the sensor in the dexterous manipulation, we
build a corner case that handles multiple deformable objects,
specifically pinching two strings with a pair of optical sensors
attached on a multi-finger robot hand.

A. Evaluation and Measurement Comparison with Clusteriza-
tion and Mocap System

To demonstrate the effectiveness of the sensor, its position
and force outputs were compared with actual values captured
from the data collection system. To evaluate force information,
the ATI sensor measurements were compared with the sensor
outputs. The ATI sensor measurements were transformed into
the global frame using the pose of the indenter. During the
evaluation, the focus was on single-contact scenarios, although
this approach can be extended to multiple indenters.

To evaluate contact point accuracy, the contact cluster
position derived from the sensor was utilized in relation to
the indenter pose. First, the center position of each cluster in
2D image coordinates was extracted and converted into 3D
positions in the real-world coordinate system. These cluster
positions were then compared with the indenter poses. It is
important to note that the contact cluster position does not
exactly match the pose of the indenter, since the origin of the
indenter is fixed at its bottom center, while the actual contact

(a) (b)
Fig. 13. Evaluation result of the sensor. (a) Measured ATI force sensor output
vs predicted force; (b) measured position of tip of indenter via motion capture
system vs predicted position of the center of clusterized indentation.

position varies based on the indenter’s geometry. Even when
using hemispherical indenters to minimize this discrepancy,
some position differences are inherently expected.

60 data points were collected for sensor evaluation. The
results of force and position comparisons are shown in Fig. 13.
The x-axes in both figures represent the measured position and
force information recorded from the motion capture system
and ATI sensor, while the y-axes show the predicted values of
the position of the center of cluster and forces. Both results
demonstrate good alignment in all three spatial directions
(x, y, and z). The mean position errors in the x, y, and z
coordinates are 0.684, 0.376, and 1.292 mm, respectively.
The mean force errors are 0.106, 0.113, and 0.139 N in
the x, y, and z directions, with an overall force magnitude
error of 0.239 N. These results confirm that the contact force
clusterization and position estimation methods closely match
the actual measurements from the motion capture and ATI
sensor systems. Please note that the inherent resolution of the
motion capture system is less than 0.2 mm, and the resolution
of the ATI-mini SI-145-5 force/torque sensor is 0.0625 N.
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B. Evaluation with Multi-object Manipulation
Advanced dexterous manipulation requires the ability to

distinguish between multiple simultaneously contacted objects
and respond selectively to changes in their states. To demon-
strate the practical utility of TensorTouch’s calibrated stress
tensor estimation, a challenging multi-object manipulation
scenario was designed that tests both the force discrimination
capabilities and the precision control enabled by the rich tactile
feedback.

The experimental task involves simultaneously contacting
two deformable objects (strings or cables) with tactile sensor-
equipped fingertips, detecting differential motion between
the objects, and maintaining selective contact with only the
moving object. This scenario mirrors real-world manipulation
challenges where robots must identify and respond to specific
objects among multiple contacts, such as untangling cables or
selectively manipulating individual strands in textile handling.

The task evaluation employed various cable and string
combinations with different material properties including vary-
ing stiffness, thickness, and surface texture. Performance was
assessed based on the system’s ability to accurately classify
which object experienced greater applied force and subse-
quently maintain grasp on only the target object through
coordinated finger repositioning. This evaluation framework
tests both the sensing accuracy of the force field estimation and
the effectiveness of the tactile-feedback-driven control system.

1) Graph-Based Contact Control for Multi-Object Manip-
ulation: To enable precise finger positioning based on tactile
feedback, a graph-based control framework was implemented
that leverages the calibrated force and displacement estimates
from TensorTouch. This approach addresses the challenge
of controlling finger contacts in scenarios where analytical
models of multi-object interaction dynamics are complex or
unavailable.

The contact graph construction process involves systematic
exploration of the joint configuration space while maintaining
contact between the thumb and index fingers. Data collection
captures pairs of joint configurations alongside corresponding
tactile responses, specifically recording joint angles for both
fingers and contact cluster positions detected by the thumb and
index-mounted tactile sensors. The resulting dataset encom-
passes approximately 2,700 contact configurations spanning
the operational workspace.

Graph connectivity is established by linking configurations
that are physically reachable through small joint displace-
ments, with edge weights determined by joint space distances.
This connectivity structure enables identification of smooth
transition paths between different contact states while respect-
ing the kinematic constraints of the hand. The dense sampling
across the workspace ensures robust path planning capabilities
even in complex contact scenarios.

During manipulation tasks, the system locates the graph
node closest to the current joint configuration and contact
state, then computes optimal paths to desired contact configu-
rations using Dijkstra’s shortest path algorithm. This approach
enables stable navigation through contact-rich regions of the
state space without requiring precise analytical models of the
finger-object interaction dynamics, which can be particularly

challenging when dealing with deformable objects like strings
and cables.

2) Multi-Object String Manipulation Evaluation: The eval-
uation protocol tests the integrated performance of force field
estimation and graph-based control through a systematic multi-
stage manipulation task. The experimental setup positions two
objects between the thumb and index fingers, each equipped
with calibrated tactile sensors as shown in Fig. 1, where
TensorTouch processes tactile deformation images to generate
comprehensive contact information during the manipulation
sequence.

The manipulation protocol begins with simultaneous contact
establishment between both fingertips and both target objects,
creating a stable initial configuration with multiple contact
regions. Force monitoring through the contact clustering algo-
rithm tracks the magnitude and spatial distribution of forces
across both sensor surfaces. When differential motion is intro-
duced by gently displacing one object, the clustering system
detects asymmetric force changes indicating which object is
experiencing external perturbation.

Upon detection of differential motion, the control system
queries the contact graph to identify valid trajectories for
repositioning the fingers to maintain contact solely with the
moving object. Path planning considers both the desired con-
tact cluster positions and the kinematic constraints encoded
in the graph structure, ensuring stable finger repositioning
while maintaining appropriate contact forces throughout the
transition.

Object combinations tested include pairs of identical cables
to assess discrimination sensitivity, different cable types to
evaluate performance with varying material properties, cable-
rigid object combinations to test mixed compliance scenarios,
and pairs of rigid objects as a control condition. Each combi-
nation presents unique challenges for the force discrimination
and control systems, with performance metrics capturing both
detection accuracy and manipulation success rates.

Object Success False Other
Combination Rate Detection Failures

Two identical 21/31 4/31 6/31
cables (A+A) (67.7%) (12.9%) (19.4%)

Different cables 15/20 2/20 3/20
(A+B) (75.0%) (10.0%) (15.0%)

Cable + 17/20 1/20 2/20
rigid object (85.0%) (5.0%) (10.0%)

Two rigid 18/20 0/20 2/20
objects (90.0%) (0.0%) (10.0%)

TABLE II
SUCCESS RATES FOR SELECTIVE GRASPING ACROSS OBJECT

COMBINATIONS. CABLE A REFERS TO 2.18MM THICKNESS CABLES, AND
B REFERS TO THE 3.01MM THICKNESS CABLES. FOR THE RIGID OBJECTS,

WE TRIED WITH THE PENS WITH 8MM DIAMETER.

The experimental results demonstrate reliable distinction
between multiple contact regions and successful selective
grasp maintenance across diverse object combinations. Perfor-
mance shows clear correlation with the mechanical differences
between objects, achieving highest success rates when manip-
ulating objects with distinct stiffness properties. The system
successfully handles the challenging case of identical cables,
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indicating sufficient force discrimination resolution for subtle
material variations.

Failure analysis reveals that most unsuccessful trials result
from insufficient joint torque in the Allegro Hand rather than
sensing or control algorithm limitations, suggesting that the
tactile sensing and path planning components perform robustly
within the hardware constraints. The evaluation confirms that
calibrated force field estimates provide sufficient spatial and
temporal resolution for complex manipulation tasks involving
multiple deformable objects, validating the practical utility of
the TensorTouch framework for advanced dexterous manipu-
lation applications.

VI. CONCLUSION

This paper presented TensorTouch, a comprehensive frame-
work for stress tensor estimation from 3D optical tactile
sensors designed specifically for complex manipulation tasks.
We developed a physics-based calibration methodology that
combines motion capture data collection, FE analysis, and
deep learning to extract detailed contact information from
tactile images. Our approach enables accurate estimation of
contact area, normal and shear forces, deformed shape, and
stress distributions across the sensor surface, even under
large deformations. Experimental validation demonstrated that
our framework achieves sub-millimeter position accuracy and
precise force estimation across multiple sensor configurations,
enabling reliable multi-contact tracking during complex ma-
nipulation tasks.

The results demonstrate significant advantages for dexter-
ous manipulation in contact-rich environments. By extracting
comprehensive stress tensors from vision-based tactile sen-
sors, robots can better understand and respond to complex
force interactions during manipulation. Our graph-based con-
trol framework leveraging these rich tactile features enabled
selective string grasping with success rates of up to 90%
in challenging multi-object scenarios. The modular sensor
design and generalizable calibration approach presented in
this work provide a foundation for integrating sophisticated
tactile sensing into various robotic platforms without requiring
custom sensor designs for each application. This bridges an
important gap between the mechanical properties of highly
compliant, sensitive tactile sensors and their practical utility
in real-world robotic systems.

Future work will focus on extending this framework in
three key directions. First, we aim to generate realistic images
of sensor deformation directly from indenter pose and shape
information, potentially enabling physics-based data augmen-
tation for training. Second, we plan to integrate our entire
modeling pipeline into simulated environments to accelerate
policy training for complex manipulation tasks, addressing
the well-known sample efficiency limitations of reinforcement
learning. Finally, we will investigate the effectiveness of
TensorTouch in behavior cloning frameworks that leverage the
rich stress tensor information rather than relying solely on raw
RGB images from tactile sensors. This approach could enable
more data-efficient learning of skilled manipulation behaviors
by providing structured, physically meaningful representations
of contact interactions.
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VIII. APPENDIX

A. Analysis on Accuracy of Calibration System

To validate our motion capture system’s accuracy for phys-
ical object tracking, we conducted error analysis using a
CNC machine as ground truth reference. The experimental
setup consisted of a CNC machine with a rigid body marker
array attached to its movable head and a stationary reference
marker array. The CNC machine was programmed to move in
precise 1 mm increments along each axis (X, Y, Z) across its
operational range (190 mm in X-axis, 36 mm in Y-axis, and
110 mm in Z-axis).

At each position, after allowing the system to stabilize, we
recorded both the commanded CNC position and the relative
transform between marker arrays as reported by the motion
capture system. The absolute difference between the mocap-
measured displacement and the known CNC displacement was
calculated to quantify tracking error. This process generated
comprehensive error data across the full workspace, enabling
statistical analysis of system accuracy. Our results demonstrate
sub-millimeter accuracy with mean errors of 0.0849 mm (SD
= 0.0524 mm), 0.0405 mm (SD = 0.0230 mm), and 0.0308
mm (SD = 0.0291 mm) for X, Y, and Z axes respectively. The
position-dependent error analysis shows no strong correlation
between error magnitude and position, indicating consistent
tracking accuracy throughout the workspace. These error val-
ues confirm that our motion capture system provides sufficient
accuracy for establishing reliable correspondence between
simulation and real-world object poses.

Fig. 14. Error distribution of the motion capture system across the three spatial
axes. (a) Boxplot representation showing the median, quartiles, and outliers of
positional errors for each axis. (b) Mean errors with standard deviation error
bars, highlighting the sub-0.1 mm accuracy achieved in all directions.

B. Characterization of Gel Materials Mechanical Properties

The mechanical properties of the silicone elastomers used in
tactile sensors were characterized using a CellScale BioTester
5000, a specialized equipment for soft material testing. This
characterization was critical for creating accurate finite ele-
ment models that could properly simulate large deformations
of the gel surfaces during contact.
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Fig. 15. Position-dependent error analysis for the motion capture system.
Scatter plots showing the relationship between measured error and position
for (a) X-axis, (b) Y-axis, and (c) Z-axis. The relatively uniform distribution
of errors across positions indicates that tracking accuracy remains consistent
throughout the workspace, with no significant systematic biases or position-
dependent error patterns observed in any dimension.

1) Sample Preparation and Testing Methodology: Three
silicone elastomer formulations were prepared with varying
activator-to-base ratios: 15:1 (hard), 20:1 (soft), and 23:1
(extra soft). For each formulation, five identical 8mm ×
8mm × 1mm specimens were fabricated and mounted on the
CellScale BioTester using rakes with 0.7mm tine spacing for
uniform force distribution. The testing apparatus included a
temperature-controlled chamber at 25°C and high-resolution
cameras for real-time strain measurement using digital image
correlation. Each specimen underwent uniaxial and biaxial
testing protocols. Uniaxial tests stretched samples in the x-
direction with free y-direction contraction, then were repeated
in the y-direction. Samples were subjected to three com-
plete load-unload cycles to capture potential Mullins effect
(stress softening), reaching maximum strains of approximately
50%—representative of deformation ranges in typical tactile
sensor manipulation tasks.

Biaxial tests simultaneously stretched samples in both x
and y directions at identical rates to achieve equibiaxial strain
conditions. This testing mode is particularly relevant for tactile
sensors as it better represents complex loading conditions
during multi-directional contacts. Similar to uniaxial tests,
three complete loading cycles ensured mechanical response
stability.

2) Data Processing and Material Model Fitting: Force-
displacement data from all tests was converted to engineering
stress-strain curves and averaged across all five specimens per
formulation. For uniaxial tests, results from both directions
were combined to create comprehensive datasets accounting
for material anisotropy. The data exhibited classic hyperelastic
behavior with nonlinear stress-strain relationships and minimal
hysteresis, confirming the appropriateness of hyperelastic con-
stitutive models in FE analysis.

Experimental data was fitted to the Yeoh hyperelastic model,
particularly suitable for elastomers undergoing large defor-
mations. The processed stress-strain data and corresponding
Yeoh model parameters were incorporated into FE analysis,
enabling accurate modeling of gel mechanical response during
simulated indentation tests and capturing complex deforma-
tion patterns critical for vision-based tactile sensor calibra-
tion. Experimental characterization confirmed that increasing
crosslinker-to-base ratio systematically produces softer mate-
rials, with the 23:1 formulation exhibiting approximately one-

(a) (b)
Fig. 16. Mechanical characterization of silicone elastomers for tactile sensors.
(a) a setup with a square silicone specimen mounted using rake attachments
for biaxial testing; (b) Uniaxial stress-strain curves showing the effect of
crosslinker-to-base ratio on mechanical properties.

Fig. 17. Contact points (blue) in 3D space for a representative configuration
(z = 4.3 cm, pitch = 0.0◦). The principal axis is shown in red, and the best
inlier axis (from the RANSAC-like cylinder fitting) is shown in green.

fourth the stiffness of the 15:1 formulation.

C. Implementation Details of Optimal Fingertip Pose Selec-
tion

We developed a systematic pipeline for selecting the
thumb’s distal-link pose to accommodate vision-based tactile
sensors while maintaining high manipulability. The approach
generates URDF variants with different thumb parameteriza-
tions and evaluates them through collision checking, configura-
tion filtering, and metric computation. For each URDF variant,
we modify the thumb’s distal joint by applying specified
z-offset and pitch angle, loading the resulting URDF into
Pinocchio for forward kinematics computation. Since our
tactile sensor has a deformable gel surface, each fingertip’s
collision geometry is shrunk by approximately 15% to account
for small contact deformations.

We create a grid of joint angles for both thumb and index
fingers, then use forward kinematics to compute fingertip poses
and Jacobians. Configurations with near-zero manipulability
(below 10−23) are discarded. Additional filters ensure con-
tacts occur within 6 cm distance and require proper normal
alignment between fingertips (opposing normals with negative
dot product). For viable configurations, we query the collision
detection system for exact contact points between sensor
surfaces. These contact points represent physically feasible
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Fig. 18. (Left) Mean manipulability
(√

det(JJ⊤)
)

across different z-offsets
(cm) and pitch angles (deg). (Right) The number of principal points (i.e.,
fingertip contact points inliers) for each (z, pitch) pair.

thumb-index contacts and form our core dataset for each
URDF variant, as shown in Fig. 17.

To measure contact point alignment, we employ a
RANSAC-like cylinder-fitting procedure that searches for a
3D axis maximizing the number of contact points within 1 cm
radius. This identifies a “best inlier axis” along which fingers
can most reliably make contact. We also compute a simpler
principal axis using PCA on the contact point cloud.

Fig. 18 presents heatmaps summarizing mean manipulabil-
ity and the number of well-aligned contact points for different
parameter combinations. Although some configurations yield
higher manipulability alone, we sought balance between dex-
terity and contact reliability. The variant z = 4.3 cm, pitch
= 0.0◦ are selected as optimal, which exhibits numerous
well-aligned contact points while maintaining strong overall
manipulability. The cylinder-fitting results in Fig. 17 reveal
how effectively contact points cluster along a single axis,
demonstrating the method’s ability to identify configurations
suitable for reliable pinching operations.
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